17CV72

Seventh Semester B.E. Degree Examination, Jan./Feb. 2021 Design of RCC and Steel Structures

Time: 3 hrs .

Max. Marks: 100

Note: 1. Answer any ONE full question from Module-1 and Module-2.

2. Use of IS-456, IS-800, SP-6(1), SP-16 and Steel tables may be permitted.

Module-1

2 Design a combined rectangular footing slab type for two columns A and B, carrying loads of 500 kN and 700 kN respectively. The cross section dimension of column ' A ' is $300 \mathrm{~mm} \times 300 \mathrm{~mm}$ and column ' B ' is $400 \mathrm{~mm} \times 400 \mathrm{~mm}$. The width of the footing is restricted to 1.80 m . the centre to centre spacing of columns is 3.40 m . The dafe bearing capacity of the foundation soil is $150 \mathrm{kN} / \mathrm{m}^{2}$. Use M20 grade concrete and $\mathrm{Fe}-415$ steel. The design must include all the necessary safety checks and write a neat sketch of the cross section of the components showing the reinforcement details.
(50 Marks)

Module-2

4 Design a steel roof truss with its geometry as shown in Fig.Q4. The analysed forces in the members due to dead load, live load and wind load are given in Table.Q4 for principal rafter, principal tie and for major sling member. Determine the maximum design forces due to load combinations as per IS-800 for the above mentioned members and design the same members with all the necessary checks including for reversal of stresses. Use 16 mm diameter bolt of grade 4.6 for the member end connections. Write a neat sketch of the design details describing all the parts. Steel section available is $\mathrm{Fe}-410$ grade.

$\begin{aligned} \text { Note: }+ & \rightarrow \text { Tensile force } \\ & \rightarrow \text { compressive force }\end{aligned}$
Table.Q4

